About

Minggu, 06 Desember 2015

~"LANGKAH-LANGKAH ANALISIS FAKTOR DENGAN IBM SPSS 21"~

Sebelumnya kita sudah membahas mengenai analisis faktor. Berikut akan kita bahas bagaimana cara mengolah data dengan IBM SPSS 21 dengan teknik Analisis Faktor. Data berikut diambil dari latihan halaman 139 Buku J. Supranto :

Sumber : Supranto, J. 2004. Analisis Multivariate Arti dan Interpretasi.

Dalam suatu studi mengenai hubungan antara perilaku rumah tangga dan belanja, data mengenai pertanyaan gaya hidup , diperoleh dengan menggunakan 7 butir skala yaitu 1 = sangat tidak setuju sampai 7 = sangat setuju.
X1 = saya lebih baik tinggal di rumah daripada pergi pesta
X2 = saya selalu mengecek harga walaupun pada barang murah
X3 = majalah lebih menarik daripada bioskop
X4 = saya tidak mau membeli produk yang diiklankan di billboard
X5 = saya termasuk homebody
X6 = saya menyimpan dan membelanjakan kupon
X7 = perusahaan banyak menghabiskan uang untuk membiayai iklan

Dari data di atas akan dilakukan analisis faktor dengan tujuan untuk mendapatkan faktor-faktor yang lebih sedikit dari 7 variabel di atas. Adapun langkah-langkah yang dapat dilakukan adalah :

1. Klik Start --> IBM SPSS 21. Pada Variable View isi seperti berikut :
 2. Pada Data View, input data seperti berikut :
3. Klik Analyze --> Dimension Reduction --> Factor
 

4. Pada tabel Factor Analysis, pindahkan semua variabel yang akan dianalisis ke kolom variables 


5. Pilih Descriptives dan akan muncul tabel Factor Analysis Descriptives, centang Coefficients, Significance levels, KMO and Bartlett's test of sphericity lalu continue.


6. Pilih Extraction maka akan muncul tabel Factor Analysis Rotation. Centang Varimax pada kolom method, karena tujuan kita adalah menghasilkan faktor-faktor unik dan berusaha membuat seminimum mungkin banyaknya variabel dengan muatan tinggi pada satu faktor. 
Pada kolom Display centang Rotated solution dan Loading plots lalu continue.

















7. Pilih Scores maka akan muncul tabel Factor Analysis : Factor Scores. Dalam hal ini berguna jika ingin melakukan analisis lanjutan. Dan disarankan menggunakan metode principal component analysis. Centang Save as Variables lalu centang Anderson-Rubin. Dan dilanjutkan dengan centang Display factor score coefficient matrix lalu continue.


8. Klik OK

Ada tiga methode mengestimasi skor faktor, yaitu :
  1. Metode Regression. Skor yang dihasilkan memiliki rata-rata 0 dan varians sama dengan kuadrat korelasi berganda antara skor faktor dengan nilai variabel aslinya. Skor yang diperoleh bisa jadi masih berkorelasi walaupun faktor adalah orthogonal.
  2. Metode Bartlett. Skor yang dihasilkan memiliki rata-rata 0 dan jumlah kuadrat faktor unik berada pada range variabel yang minimal.
  3. Metode Anderson-Rubin. Merupakan modifikasi dari metode Bartlett yang menjamin adanya orthogonal pada faktor yang diestimasi. Skornya akan menghasilkan mean 0 dan standar deviasi 1 serta tidak berkorelasi satu sama lainnya.


Sabtu, 05 Desember 2015

~"ANALISIS FAKTOR"~

Biasanya saya menggunakan analisis faktor adalah untuk mereduksi sejumlah n-variabel menjadi  m-faktor unik, dimana m<n. AKan tetapi m-faktor tersebut bisa menyerap sebagian besar informasi yang terkandung dalam n-variabel asli atau yang bisa memberikan sumbangan terhadap varian seluruh variabel. Dalam analisis faktor tidak terdapat variabel bebas atau pun variabel tak bebas. 

Dalan analisis multivariate terdapat dua kelompok model besar, yaitu :
  1. Model Dependensi, terdapat didalamnya variabel bebas dan variabel tak bebas. Dalam hal ini melihat pengaruh variabel bebas terhadap variabel tak bebas. Dan bahkan hingga meramalkan nilai variabel tak bebas berdasarkan variabel bebas. Contohnya pada analisis regresi, analisis diskriminan, analisis varian, dll.
  2. Model Interdependensi, tidak terdapat variabel bebas dan variabel tak bebas. Dalam hal ini menganalisis komponen utama berbagai jenis hubungan. Dan semua variabel dan hubungannya dianggap terjadi secara simultan. Contohnya pada analisis faktor dan analisis diskriminan.

Dalam analisis regresi linear berganda sering ditemukan terjadinya multikolinearitas yaitu adanya korelasi antara variabel bebas. Hal ini tentu akan melanggar asumsi dalam regresi linear berganda. Untuk itu, salah satu cara yang dapat dilakukan adalah mengubah n-variabel bebas yang berkorelasi menjadi beberapa m-faktor sebagai variabel baru yang tidak saling berkorelasi dengan n<m.

Ada beberapa contoh penelitian yang menggunakan analisis faktor :
  1. Dalam pemasaran untuk mengidentifikasi karakteristik pelanggan yang sensitif terhadap harga.
  2. Dalam manajemen SDM untuk mengidentifikasi faktor-faktor yang mempengaruhi produktivitas karyawan.
  3. dll

Langkah-langkah dalam analisis faktor, yaitu :
1. Merumuskan masalah
Meliputi : 
  • Tujuan analisis faktor harus diidentifikasi
  • Variabel yang digunakan berdasarkan teori dan penelitian sebelumnya dan pertimbangan peneliti.
  • Pengukuran variabel berdasarkan skala interval atau rasio.
  • Banyaknya elemen sampel (n) harus cukup memadai. Sebagai petunjuk kasar, jika ada k variabel maka n = 4k. 
Pengujian untuk hal ini dilakukan dengan menggunakan statistik KMO (Kaiser-Meyer-Olkin) yaitu untuk mengukur kecukupan sampling. Nilai KMO yang kecil (<0,50) menunjukkan bahwa korelasi antar-pasangan variabel tidak bisa diterangkan oleh variabel lainnya dan analisis faktor tidak mungkin tepat.

2. Menentukan bentuk matriks korelasi
Analisis faktor tepat digunakan jika ada korelasi antara variabel-variabel yang diteliti. Dalam hal ini matriks korelasi bukanlah matriks identitas.  Sedangkan untuk menguji apakah analisis faktor tepat digunakan atau tidak maka digunakan pengujian "The Bartlett's test of sphericity". 
Hipotesis ujinya adalah

    Ho : matriks korelasi adalah matriks identitas (tidak ada korelasi antar variabel)
    Ha : matriks korelasi adalah bukan matriks identitas (ada korelasi antar variabel)

Ho akan ditolak jika nilai signifikansi pada Bartlett's test adalah kurang dari 5%.
Artinya terdapat korelasi antar variabel dan model tepat digunakan dengan teknik analisis faktor.

3. Menentukan metode analisis faktor
Terdapat beberapa metode analisis faktor yang biasa digunakan yaitu :
  1. Principal Component Analysi Jumlah varian dalam data dipertimbangkan direkomendasikan jika banyaknya faktor harus minimum dengan memperhitungkan varian maksimum dalam data untuk dipergunakan dalam analisis multivariat lebih lanjut.
  2. Common Factor Analysis, direkomendasikan untuk mengenali atau mengidentifikasi dimensi yang mendasari.

3. Menentukan banyaknya faktor
Ada beberapa prosedur yang dapat dilakukan, yaitu :
  • Penentuan apriori yaitu menentukan jumlah faktor berdasarkan pengalaman sebelumnya atau teori yang mendukung. Jumlah faktor langsung ditentukan sesuai dengan yang diharapkan.
  • Berdasarkan nilai eigen (eigenvalues) yaitu berdasarkan besarnya sumbangan dari faktor terhadap varian seluruh variabel asli. Dan hanya faktor yang memiliki nilai varian lebih besar dari 1 yang akan dimasukkan dalam model.
  • Berdasarkan Scree Plot yaitu suatu plot dari nilai eigen sebagai fungsi banyaknya faktor. Hasil eksperimen menunjukkan bahwa titik tempat di mana scree plot mulai terjadi, menunjukkan banyaknya faktor yang benar. Kenyataannya jumlah faktor dengan scree plot akan lebih banyak 1 daripada berdasarkan eigenvalues.
  • Penentuan berdasarkan pada persentase varian. Petunjuk yang disarankan adalah ekstraksi faktor dihentikan jika kumulatif persentase varian sudah mencapai paling sedikit 60% atau 75% dari seluruh varian variabel asli.

4. Melakukan rotasi faktor dengan tujuan untuk mempermudah interpretasi faktor. Melalui rotasi faktor maka matriks faktor akan diubah ke matriks yang lebih sederhana. Dalam melakukan rotasi ada beberapa metode yang digunakan, yaitu orthogonal rotation dan oblique rotation.
Orthogonal rotation yang biasanya digunakan adalah varimax procedure yaitu berusaha meminimumkan banyaknya variabel dengan muatan tinggi pada satu faktor, sehingga memudahkan interpretasi faktor-faktor. Sedangkan oblique rotation digunakan jika faktor dalam populasi berkorelasi sangat kuat.

5. Melakukan interpretasi faktor. Akan lebih mudah dilakukan dengan mengenali/mengidentifikasi variabel yang muatannya (loadingnya) besar pada faktor yang sama. Dalam hal ini memberi nama dari faktor yang terbentuk.

6. Menghitung skor atau nilai faktor, hal ini dilakukan jika ingin melakukan analisis lanjutan. Seperti regresi yang mana faktor adalah hasil variabel yang tidak multikolinear, atau analisis multidiskriminan. Sedangkan jika kita hanya ingin mengidentifikasi faktor atau karakteristik maka hal ini tidak perlu dilakukan.
Metode component factor analysis tidak akan ada korelasi pada faktor-faktor yang dihasilkan. Sedangkan jika menggunakan common factor analysisi maka tidak akan menjamin bahwa faktor tersebut tidak akan berkorelasi. Menghitung faktor skor dapat dilakukan setelah model faktor dibentuk, yaitu :

Fi = wi1F1 + wi2F2 + wi3F3 + ... + wijXj + ...  wikXk

Fi  = skor (nilai) faktor ke-i
wi = bobot / koefisien faktor
k  = banyaknya variabel
i  = jumlah faktor

Timbangan atau bobot atau koefisien faktor wij digunakan untuk menggabung variabel yang dibakukan yang diperoleh dari factor score coefficient matrix.

7. Menentukan "Model Fit".


Reference :
  • Sharma, Shubash, 1996. Applied Multivariate Techniques. John Wiley & Sons, Inc. Canada.
  • Supranto, J., 2004. Analisis Multivariat : Arti dan Interpretasi. Rineka Cipta. Jakarta.