Statistic do not speak for themselves
Milton Friedman
Statistics is the grammar of science
Karl Pearson
Statistics : The Mathematical Theory of Ignorance
Morris Kline
join di youtube Mellyna Eka Yan Fitri ya...
kunjungi : https://www.youtube.com/@mellynayan
Rabu, 08 April 2015
Minggu, 29 Maret 2015
Minggu, 15 Maret 2015
Sabtu, 14 Maret 2015
Senin, 05 Januari 2015
~"ANALISIS KORELASI PEARSON PRODUCT MOMENT"~
Korelasi Pearson Product Moment digunakan untuk mengetahui hubungan dua variabel dengan syarat kedua variabel tersebut berskala interval atau rasio. Nilai korelasi menentukan ada atau tidaknya hubungan serta arah dari hubungan kedua variabel tersebut. Besar kecinya hubungan antara dua variabel dinyatakan dalam bilangan koefisien korelasi yang disimbolkan dengan r.
Adapun nilainya berkisar antara -1 < r < +1, nilai r = +1 dikatakan korelasi sempurna sedangkan r = 0 berarti tidak adanya korelasi antara kedua variabel. Tanda positif dan negatif dari sebuah nilai korelasi menunjukkan arah dari korelasi tersebut, jika nilai r bertanda positif dikatakan hubungan kedua variabel adalah searah atau positif sedangkan jika nilai r adalah negatif dikatakan hubungan kedua variabel adalah berlawanan arah atau negatif. Dapat digambarkan dengan grafik berikut ini :
1. Korelasi Positif, artinya jika variabel bebas X naik maka variabel tak bebas Y akan naik juga, sebaliknya jika variabel bebas X turun maka variabel tak bebas Y akan turun juga.
2. Korelasi Negatif, artinya jika variabel bebas X naik maka variabel tak bebas Y akan turun, sebaliknya jika variabel bebas X turun maka variabel tak bebas Y akan naik.
4. Korelasi Sempurna, artinya kenaikan atau penurunan variabel bebas berbanding dengan kenaikan atau penurunan variabel lainnya, dan grafik menunjukkan plot tepat berada pada garis linear.
Adapun perhitungan nilai korelasi Pearson Product Moment adalah :
Keterangan :
Adapun interpretasi dari nilai korelasi tersebut (menurut Sugiyono, 2007) adalah
0,00 - 0,199 = sangat rendah
0,20 - 0,399 = rendah
0,40 - 0,599 = sedang
0,60 - 0,799 = kuat
0,80 - 1,000 = sangat kuat
Jadi semakin dekat ke +1 maka nilai koefisien korelasi semakin kuat sedangkan semakin dekat ke 0 maka nilai koefisien korelasi semakin lemah. Koefisien korelasi = +1 dikatakan sempurna.
By MEYF
Referensi:
- Mendenhall, Sincinch. 1996. A Second Course In Statistics. Regression Analysis. Fifth Edition. Prentice Hall Internatiomal Edition.
- Priyatno, Duwi. 2010. Paham Analisa Statistik Data dengan SPSS. Mediakom. Yogyakarta.
- Sugiyono. 2007. Metode Penelitian Bisnis. CV Alfabeta. Bandung.
Minggu, 04 Januari 2015
`"CONTOH UJI AUTOKORELASI DENGAN IBM SPSS 21"~
Data diambil dari contoh uji multikolinearitas sebelumnya, dimana variabel tidak bebas Y (=karbon monoksida), dan variabel tak bebas X1 (=kandungan tar), X2 (=kandungan nikotin) dan X3 (=berat rokok).
Adapun langkah-langkah pengujiannya adalah :
1. Menentukan Hipotesis Uji
Ho : Tidak ada autokorelasi
H1 : Ada Autokorelasi
2. Menentukan Statistik Uji (menggunakan IBM SPSS 21)
Langkah-langkahnya :
a. Klik Start >> IBM SPSS 21 >> Variable View, isikan data berikut :
b. Pilih Data View, dan isikan data sebagai berikut :
c. Klik Analyze >> Regression >> Linear
d. Pindahkan variabel karbon monoksida (Y) ke kolom Dependent dan variabel kandungan tar (X1), kandungan nikotin (X2) dan berat rokok (X3) ke kolom Independent.
e. Klik menu Statistic >> centang Durbin Watson >> Continue >> OK
f. Diperoleh hasil sebagai berikut :
Dari tabel Durbin-Watson, dimana jumlah variabel bebas k=3 dan jumlah data n=25. Pada taraf signifikansi 5% baris n=25 dan kolom k=3 diperoleh nilai dl=1,123 (4-dl = 2,877) dan du=1,654 (4-du=2,346)
3. Keputusan :
Diperoleh nilai d=2,858 (pada kolom Durbin-Watson tabel Model Sumary). Nilai (4-du)=2,346<d=2,858<(4-dl)=2,877. Keputusannya adalah berada pada daerah keragua-raguan.
4. Kesimpulan
Kita belum dapat menentukan apakah terjadi autokorelasi atau pun tidak.
Jika masih ingin menentukan apakah terdapat autokorelasi atau tidak, kita dapat gunakan analisis uji autokorelasi lainnya seperti uji Run atau Uji Breusch Godfrey (pada postingan berikutnya).
Semoga Bermanfaat ^_^
by MEYF