Perbedaan mendasar analisis faktor dengan analisis klaster terletak pada apa yang dikelompokkan/direduksinya. Dalam analisis faktor mengelompokkan variabel namun pada analisis klaster mengelompokkan objek/responden. Jika data sudah diinput dalam suatu worksheet pengolahan data, maka yang membedakan keduanya yaitu pada analisis faktor meengelompokkan kolom sedangkan pada analisis klaster mengelompokkan baris. Pengelompokkan ini didasarkan pada klasifikasi objek atau responden/kasus dalam kelompok yang homogen. Kelompok homogen ini disebut klaster.
Analisis klaster telah digunakan dalam pemasaran dengan berbagai tujuan (menurut J.Supranto, 2004) sebagai berikut :
Analisis klaster telah digunakan dalam pemasaran dengan berbagai tujuan (menurut J.Supranto, 2004) sebagai berikut :
1. Tujuan membuat segmen pasar.
2. Memahami perilaku membeli
3. Mengenali peluang produk baru
4. Memilih uji pasar
5. Mereduksi data
Langkah-langkah dalam analisis klaster sebagai berikut :
1. Merumuskan masalah pengklasteran dengan mendefinisikan variabel yang digunakan.
2. Memilih ukuran jarak atau similaritas. Ukuran kemiripan yang paling biasa digunakan adalah jarak Euclidean yaitu akar dari jumlah kuadrat deviasi.
3. Memilih prosedur pengklasteran apakah hirarki atau non hirarki. Biasanya dalam pemasaran menggunakan metode hirarki aglomeratif.
4. Menentukan banyaknya klaster, tidak ada aturan baku, namun sebagai pertimbangan dapat digunakan hal berikut ini :
a. Pertimbangan teoritis, konseptual, dan praktis
b. Dalam klaster hirarki dapat menggunakan jarak
c. Dalam klaster Non-Hirarki dapat menggunakan rasio jumlah varian dalam klaster dengan antar klaster dapat diplotkan . Titik dimana suatu siku atau lekukan tajam terjadi menunjukkan banyaknya klaster.
5. Menginterpretasikan profil klaster
6. Menguji reliabilitas dan validitas klaster.
Hal ini dapat juga dilihat pada gambar 1 berikut ini :
Gambar 1. Langkah-langkah Analisis Klaster
Sumber : Supranto, 2004.
Klasifikasi prosedur pengklasteran dapat dilihat pada gambar 2 berikut ini :
Gambar 2. Klasifikasi Prosedur Pengklasteran
Sumber : Supranti, 2004
1. Klaster Hirarki
Diawali dengan pengelompokkan dua atau lebih objek yang memiliki kesamaan paling dekat. Selanjutnya masing-masing kelompok lakukan lagi pengelompokkan yang memiliki kesamaan paling dekat, demikian seterusnya hingga tidak ada yang mirip. Metode ini terlihat seperti akar pohon. Biasanya menggunakan dendogram dalam membantu menjelaskan proses hirarkinya.
Metode klaster hirarki terbagi atas dua yaitu :
a. Agglomerative = pemusatan --> setiap objek dianggap sebuah klaster, lalu cari yang mirip dan digabungkan menjadi klaster baru, dst.
b. Divisive = penyebaran --> sebuah klaster besar yang terdiri dari keseluruhan objek, lalu ketidakmiripan objek yang paling tinggi dipisahkan, dst.
2. Klaster Non-Hirarki
Diawali dengan menentukan jumlah klaster yang diinginkan apakah dua, tiga, dst. Selanjutnya proses klaster dilakukan tanpa mengikuti proses hirarki yang biasa disebut juga K-Means Cluster. Langkah-langkahnya :
a. Memilih klaster pusat
b. Semua objek dalam jarak tertentu ditempatkan pada klaster yang terbentuk.
c. Memilih klaster selanjutnya dan menempatkan kembali objek sampai objek semuanya ditempatkan.
Beberapa istilah jenis-jenis analisis klaster :
Single Linkage : Didasarkan pada jarak terkecil, jika jaraknya berdekatan maka akan menjadi satu klaster.
Complete Linkage : Didasarkan pada jarak terjauh, jika jaraknya berjauhan maka akan mejadi beda klaster.
Average Linkage : Didasarkan pada rata-rata jarak seluruh individu dalam klaster dengan jarak seluruh individu dalam klaster yang lain.
Ward's Methods : Didasarkan pada jumlah Sum of Square dua klaster pada masing-masing variabel
Sequential Tresholds Methods : Diawali dengan pemilihan satu klaster, kemudian penempatan objek dengan jarak tertentu, lalu lanjut dengan penempatan objek jarak tertentu lainnya, dan seterusnya.
Parallel Treshold Methods : Diawali dengan memilih sejumlah klaster secara bersamaan dan menempattkan objek ke dalamnya. Jika ada yang tidak bisa ditempatkan, maka objek itu dibiarkan saja.
Optimization Methods : Menempati objek dengan optimal yaitu memungkinkan kembali objek untuk ditempatkan.
Langkah analisis klaster lainnya yaitu interpretasi hasil maksudnya adalah memberi nama spesifik untuk menggambarkan isi klaster. Dalam melakukan analisis klaster diperlukan uji asumsi yaitu sampel benar-benar mewakili populasi dan uji multikolinearitas.
by MEYF
0 comments:
Posting Komentar